Recently published - More

Abstract

Adoptive transfer of T cell receptor–engineered (TCR-engineered) T cells is a promising approach in cancer therapy but needs improvement for more effective treatment of solid tumors. While most clinical approaches have focused on CD8+ T cells, the importance of CD4+ T cells in mediating tumor regression has become apparent. Regarding shared (self) tumor antigens, it is unclear whether the human CD4+ T cell repertoire has been shaped by tolerance mechanisms and lacks highly functional TCRs suitable for therapy. Here, TCRs against the tumor-associated antigen NY-ESO-1 were isolated either from human CD4+ T cells or from mice that express a diverse human TCR repertoire with HLA-DRA/DRB1*0401 restriction and are NY-ESO-1 negative. NY-ESO-1–reactive TCRs from the mice showed superior recognition of tumor cells and higher functional activity compared with TCRs from humans. We identified a candidate TCR, TCR-3598_2, which was expressed in CD4+ T cells and caused tumor regression in combination with NY-ESO-1–redirected CD8+ T cells in a mouse model of adoptive T cell therapy. These data suggest that MHC II–restricted TCRs against NY-ESO-1 from a nontolerant nonhuman host are of optimal affinity and that the combined use of MHC I– and II–restricted TCRs against NY-ESO-1 can make adoptive T cell therapy more effective.

Authors

Lucia Poncette, Xiaojing Chen, Felix K.M. Lorenz, Thomas Blankenstein

×

Abstract

Iron-related disorders are among the most prevalent diseases worldwide. Systemic iron homeostasis requires hepcidin, a liver-derived hormone that controls iron mobilization through its molecular target ferroportin (FPN), the only known mammalian iron exporter. This pathway is perturbed in diseases that cause iron overload. Additionally, intestinal HIF-2α is essential for the local absorptive response to systemic iron deficiency and iron overload. Our data demonstrate a hetero-tissue crosstalk mechanism, whereby hepatic hepcidin regulated intestinal HIF-2α in iron deficiency, anemia, and iron overload. We show that FPN controlled cell-autonomous iron efflux to stabilize and activate HIF-2α by regulating the activity of iron-dependent intestinal prolyl hydroxylase domain enzymes. Pharmacological blockade of HIF-2α using a clinically relevant and highly specific inhibitor successfully treated iron overload in a mouse model. These findings demonstrate a molecular link between hepatic hepcidin and intestinal HIF-2α that controls physiological iron uptake and drives iron hyperabsorption during iron overload.

Authors

Andrew J. Schwartz, Nupur K. Das, Sadeesh K. Ramakrishnan, Chesta Jain, Mladen T. Jurkovic, Jun Wu, Elizabeta Nemeth, Samira Lakhal-Littleton, Justin A. Colacino, Yatrik M. Shah

×

Abstract

While immune checkpoint blockade leads to potent antitumor efficacy, it also leads to immune-related adverse events in cancer patients. These toxicities stem from systemic immune activation resulting in inflammation of multiple organs, including the gastrointestinal tract, lung, and endocrine organs. We developed a dual variable domain immunoglobulin of anti-CTLA4 antibody (anti-CTLA4 DVD, where CTLA4 is defined as cytotoxic T lymphocyte–associated antigen-4) possessing an outer tumor-specific antigen-binding site engineered to shield the inner anti-CTLA4–binding domain. Upon reaching the tumor, the outer domain was cleaved by membrane type-serine protease 1 (MT-SP1) present in the tumor microenvironment, leading to enhanced localization of CTLA4 blockade. Anti-CTLA4 DVD markedly reduced multiorgan immune toxicity by preserving tissue-resident Tregs in Rag 1–/– mice that received naive donor CD4+ T cells from WT C57BL/6j mice. Moreover, anti-CTLA4 DVD induced potent antitumor effects by decreasing tumor-infiltrating Tregs and increasing the infiltration of antigen-specific CD8+ T lymphocytes in TRAMP-C2–bearing C57BL/6j mice. Treg depletion was mediated through the antibody-dependent cellular cytotoxicity (ADCC) mechanism, as anti-CTLA4 without the FcγR-binding portion (anti-CTLA4 DANA) spared Tregs, preventing treatment-induced toxicities. In summary, our results demonstrate an approach to anti-CTLA4 blockade that depletes tumor-infiltrating, but not tissue-resident, Tregs, preserving antitumor effects while minimizing toxicity. Thus, our tumor-conditional anti-CTLA4 DVD provides an avenue for uncoupling antitumor efficacy from immunotherapy-induced toxicities.

Authors

Chien-Chun Steven Pai, Donald M. Simons, Xiaoqing Lu, Michael Evans, Junnian Wei, Yung-hua Wang, Mingyi Chen, John Huang, Chanhyuk Park, Anthony Chang, Jiaxi Wang, Susan Westmoreland, Christine Beam, Dave Banach, Diana Bowley, Feng Dong, Jane Seagal, Wendy Ritacco, Paul L. Richardson, Soumya Mitra, Grace Lynch, Pete Bousquet, John Mankovich, Gillian Kingsbury, Lawrence Fong

×

Abstract

BACKGROUND. Patients with schizophrenia (SCZ) experience chronic cognitive deficits. Histone deacetylases (HDACs) are enzymes that regulate cognitive circuitry; however, the role of HDACs in cognitive disorders, including SCZ, remains unknown in humans. We previously determined that HDAC2 mRNA levels were lower in dorsolateral prefrontal cortex (DLPFC) tissue from donors with SCZ compared with controls. Here we investigated the relationship between in vivo HDAC expression and cognitive impairment in patients with SCZ and matched healthy controls using [11C]Martinostat positron emission tomography (PET). METHODS. In a case-control study, relative [11C]Martinostat uptake was compared between 14 patients with SCZ or schizoaffective disorder (SCZ/SAD) and 17 controls using hypothesis-driven region-of-interest analysis and unbiased whole brain voxel-wise approaches. Clinical measures, including the MATRICS consensus cognitive battery, were administered. RESULTS. Relative HDAC expression was lower in the DLPFC of patients with SCZ/SAD compared with controls, and HDAC expression positively correlated with cognitive performance scores across groups. Patients with SCZ/SAD also showed lower relative HDAC expression in the dorsomedial prefrontal cortex and orbitofrontal gyrus, and higher relative HDAC expression in the cerebral white matter, pons, and cerebellum compared with controls. CONCLUSIONS. These findings provide in vivo evidence of HDAC dysregulation in patients with SCZ and suggest that altered HDAC expression may impact cognitive function in humans. FUNDING. National Institute of Mental Health (NIMH), Brain and Behavior Foundation, Massachusetts General Hospital (MGH), Athinoula A. Martinos Center for Biomedical Imaging, National Institute of Biomedical Imaging and Bioengineering (NIBIB), NIH Shared Instrumentation Grant Program.

Authors

Tonya M. Gilbert, Nicole R. Zürcher, Christine J. Wu, Anisha Bhanot, Baileigh G. Hightower, Minhae Kim, Daniel S. Albrecht, Hsiao-Ying Wey, Frederick A. Schroeder, Anais Rodriguez-Thompson, Thomas M. Morin, Kamber L. Hart, Amelia M. Pellegrini, Misha M. Riley, Changning Wang, Steven M. Stufflebeam, Stephen J. Haggarty, Daphne J. Holt, Marco L. Loggia, Roy H. Perlis, Hannah E. Brown, Joshua L. Roffman, Jacob M. Hooker

×

Abstract

Hereditary angioedema (HAE) is a rare genetic disorder primarily caused by mutations in the SERPING1 gene encoding the C1 inhibitor (C1INH) that leads to plasma deficiency, resulting in recurrent attacks of severe swelling. In the current issue of the JCI, Haslund et al. show that in a subset of patients with type I HAE, mutated C1INH encoded by HAE-causing SERPING1 acts upon wildtype (WT) C1INH in a dominant-negative manner and forms intracellular C1INH aggregates. These aggregates lead to a reduction in the levels of secreted functional C1INH, thereby manifesting in the condition that allows the disease state. Interestingly, administration of WT SERPING1 gene is able to restore the levels of secreted C1INH, thereby opening up a novel mechanism justifying gene therapy for HAE.

Authors

Alvin H. Schmaier

×

Abstract

Adoptive cell transfer (ACT) of engineered T cell receptors (TCRs) for cancer immunotherapy has evolved from simple gene transfer of isolated TCRs to various affinity enhancement techniques that overcome limitations imposed by central and peripheral tolerance on TCR affinity. In the current issue of the JCI, Poncette et al. used mice with human TCRαβ and HLA gene loci to discover CD4+ TCRs of optimal affinity for cancer testis antigen (CTA) NY-ESO-1. They combined this TCR with a previously discovered NY-ESO-1–specific CD8+ TCR in an ACT fibrosarcoma tumor model to demonstrate the importance of T cell help in mediating antitumor responses.

Authors

Ariel Isser, Jonathan P. Schneck

×

Abstract

Hepcidin is the master regulator of iron metabolism. It plays a key role in the regulation of iron transport across the duodenal epithelium, which in turn is dependent on the oxygen-regulated transcription factor hypoxia-inducible factor 2α (HIF-2α). In this issue of the JCI, Schwartz and colleagues show that duodenal HIF-2α is itself regulated by hepcidin, thereby indicating that this transcription factor is not only regulated by oxygen, but also by iron. This work indicates that the crosstalk between liver hepcidin and intestinal HIF-2α plays an important role during iron overload, systemic iron deficiency, and anemia.

Authors

Frank S. Lee

×

Abstract

Antibodies that target immune checkpoint molecules, such as CTLA4, provide robust antitumor effects in a subset of patients. Unfortunately, not all patients respond to immune checkpoint inhibition, and some develop life-threatening immune-related adverse events (irAEs). The mechanisms that underlie irAEs from immune checkpoint inhibition are not fully understood, and treatment strategies are currently limited to targeting inflammatory mediators. In this issue of the JCI, Pai et al. report on their development of a modified CTLA4 antibody that shields the inner CTLA4-binding domain until the antibody is within the protease-rich tumor microenvironment. In a lymphopenic murine model reconstituted with naive CD4+ T cells, adapted anti-CTLA4 reduced the occurrence of irAEs and enhanced antitumor effects. This thought-provoking study lays the groundwork for further exploration of this adapted antibody in immunocompetent hosts and introduction of this adaptation to other immune checkpoint molecules. It also suggests that this approach may reduce the incidence of irAEs.

Authors

Jarushka Naidoo, Arbor Dykema, Franco D’Alessio

×

Abstract

BACKGROUND.l-Carnitine, an abundant nutrient in red meat, accelerates atherosclerosis in mice via gut microbiota–dependent formation of trimethylamine (TMA) and trimethylamine N-oxide (TMAO) via a multistep pathway involving an atherogenic intermediate, γ-butyrobetaine (γBB). The contribution of γBB in gut microbiota–dependent l-carnitine metabolism in humans is unknown. METHODS. Omnivores and vegans/vegetarians ingested deuterium-labeled l-carnitine (d3-l-carnitine) or γBB (d9-γBB), and both plasma metabolites and fecal polymicrobial transformations were examined at baseline, following oral antibiotics, or following chronic (≥2 months) l-carnitine supplementation. Human fecal commensals capable of performing each step of the l-carnitine→γBB→TMA transformation were identified. RESULTS. Studies with oral d3-l-carnitine or d9-γBB before versus after antibiotic exposure revealed gut microbiota contribution to the initial 2 steps in a metaorganismal l-carnitine→γBB→TMA→TMAO pathway in subjects. Moreover, a striking increase in d3-TMAO generation was observed in omnivores over vegans/vegetarians (>20-fold; P = 0.001) following oral d3-l-carnitine ingestion, whereas fasting endogenous plasma l-carnitine and γBB levels were similar in vegans/vegetarians (n = 32) versus omnivores (n = 40). Fecal metabolic transformation studies, and oral isotope tracer studies before versus after chronic l-carnitine supplementation, revealed that omnivores and vegans/vegetarians alike rapidly converted carnitine to γBB, whereas the second gut microbial transformation, γBB→TMA, was diet inducible (l-carnitine, omnivorous). Extensive anaerobic subculturing of human feces identified no single commensal capable of l-carnitine→TMA transformation, multiple community members that converted l-carnitine to γBB, and only 1 Clostridiales bacterium, Emergencia timonensis, that converted γBB to TMA. In coculture, E. timonensis promoted the complete l-carnitine→TMA transformation. CONCLUSION. In humans, dietary l-carnitine is converted into the atherosclerosis- and thrombosis-promoting metabolite TMAO via 2 sequential gut microbiota–dependent transformations: (a) initial rapid generation of the atherogenic intermediate γBB, followed by (b) transformation into TMA via low-abundance microbiota in omnivores, and to a markedly lower extent, in vegans/vegetarians. Gut microbiota γBB→TMA/TMAO transformation is induced by omnivorous dietary patterns and chronic l-carnitine exposure. TRIAL REGISTRATION. ClinicalTrials.gov NCT01731236. FUNDING. NIH and Office of Dietary Supplements grants HL103866, HL126827, and DK106000, and the Leducq Foundation.

Authors

Robert A. Koeth, Betzabe Rachel Lam-Galvez, Jennifer Kirsop, Zeneng Wang, Bruce S. Levison, Xiaodong Gu, Matthew F. Copeland, David Bartlett, David B. Cody, Hong J. Dai, Miranda K. Culley, Xinmin S. Li, Xiaoming Fu, Yuping Wu, Lin Li, Joseph A. DiDonato, W.H. Wilson Tang, Jose Carlos Garcia-Garcia, Stanley L. Hazen

×

Abstract

Hereditary angioedema (HAE) is an autosomal dominant disease characterized by recurrent edema attacks associated with morbidity and mortality. HAE results from variations in the SERPING1 gene that encodes the C1 inhibitor (C1INH), a serine protease inhibitor (serpin). Reduced plasma levels of C1INH lead to enhanced activation of the contact system, triggering high levels of bradykinin and increased vascular permeability, but the cellular mechanisms leading to low C1INH levels (20%–30% of normal) in heterozygous HAE type I patients remain obscure. Here, we showed that C1INH encoded by a subset of HAE-causing SERPING1 alleles affected secretion of normal C1INH protein in a dominant-negative fashion by triggering formation of protein-protein interactions between normal and mutant C1INH, leading to the creation of larger intracellular C1INH aggregates that were trapped in the endoplasmic reticulum (ER). Notably, intracellular aggregation of C1INH and ER abnormality were observed in fibroblasts from a heterozygous carrier of a dominant-negative SERPING1 gene variant, but the condition was ameliorated by viral delivery of the SERPING1 gene. Collectively, our data link abnormal accumulation of serpins, a hallmark of serpinopathies, with dominant-negative disease mechanisms affecting C1INH plasma levels in HAE type I patients, and may pave the way for new treatments of HAE.

Authors

Didde Haslund, Laura Barrett Ryø, Sara Seidelin Majidi, Iben Rose, Kristian Alsbjerg Skipper, Tue Fryland, Anja Bille Bohn, Claus Koch, Martin K. Thomsen, Yaseelan Palarasah, Thomas J. Corydon, Anette Bygum, Lene N. Nejsum, Jacob Giehm Mikkelsen

×

Abstract

The negatively charged sugar sialic acid (Sia) occupies the outermost position in the bulk of cell surface glycans. Lack of sialylated glycans due to genetic ablation of the Sia-activating enzyme CMP–sialic acid synthase (CMAS) resulted in embryonic lethality around day 9.5 post coitum (E9.5) in mice. Developmental failure was caused by complement activation on trophoblasts in Cmas–/– implants and was accompanied by infiltration of maternal neutrophils at the fetal-maternal interface, intrauterine growth restriction, impaired placental development, and a thickened Reichert’s membrane. This phenotype, which shared features with complement receptor 1-related protein Y (Crry) depletion, was rescued in E8.5 Cmas–/– mice upon injection of cobra venom factor, resulting in exhaustion of the maternal complement component C3. Here we show that Sia is dispensable for early development of the embryo proper but pivotal for fetal-maternal immune homeostasis during pregnancy, i.e., for protecting the allograft implant against attack by the maternal innate immune system. Finally, embryos devoid of cell surface sialylation suffered from malnutrition due to inadequate placentation as a secondary effect.

Authors

Markus Abeln, Iris Albers, Ulrike Peters-Bernard, Kerstin Flächsig-Schulz, Elina Kats, Andreas Kispert, Stephen Tomlinson, Rita Gerardy-Schahn, Anja Münster-Kühnel, Birgit Weinhold

×

Abstract

Activation of the type 1 angiotensin II receptor (AT1) triggers proinflammatory signaling through pathways independent of classical Gq signaling that regulate vascular homeostasis. Here, we report that the AT1 receptor preformed a heteromeric complex with the receptor for advanced glycation endproducts (RAGE). Activation of the AT1 receptor by angiotensin II (Ang II) triggered transactivation of the cytosolic tail of RAGE and NF-κB–driven proinflammatory gene expression independently of the liberation of RAGE ligands or the ligand-binding ectodomain of RAGE. The importance of this transactivation pathway was demonstrated by our finding that adverse proinflammatory signaling events induced by AT1 receptor activation were attenuated when RAGE was deleted or transactivation of its cytosolic tail was inhibited. At the same time, classical homeostatic Gq signaling pathways were unaffected by RAGE deletion or inhibition. These data position RAGE transactivation by the AT1 receptor as a target for vasculoprotective interventions. As proof of concept, we showed that treatment with the mutant RAGE peptide S391A-RAGE362–404 was able to inhibit transactivation of RAGE and attenuate Ang II–dependent inflammation and atherogenesis. Furthermore, treatment with WT RAGE362–404 restored Ang II–dependent atherogenesis in Ager/Apoe-KO mice, without restoring ligand-mediated signaling via RAGE, suggesting that the major effector of RAGE activation was its transactivation.

Authors

Raelene J. Pickering, Christos Tikellis, Carlos J. Rosado, Despina Tsorotes, Alexandra Dimitropoulos, Monique Smith, Olivier Huet, Ruth M. Seeber, Rekhati Abhayawardana, Elizabeth K.M. Johnstone, Jonathan Golledge, Yutang Wang, Karin A. Jandeleit-Dahm, Mark E. Cooper, Kevin D.G. Pfleger, Merlin C. Thomas

×

In-Press Preview - More

Abstract

Mast cells (MCs) are immune sentinels but whether they also function as antigen-presenting cells (APCs) remains elusive. Using mouse models of MC-deficiency, we report MC-dependent recruitment and activation of multiple T cell subsets to the skin and draining lymph nodes (LNs) during dengue virus (DENV) infection. Newly-recruited and locally-proliferating γδT cells were the first responding T cell subset to MC-driven inflammation and their production of IFN-γ was MC-dependent. MC-γδ T cell conjugates were observed consistently in infected peripheral tissues, suggesting a new role for MCs as non-conventional APCs for γδT cells. MC-dependent γδT cell activation and proliferation during DENV infection required TCR signaling and the non-conventional antigen presentation molecule EPCR on MCs. γδT cells, not previously implicated in DENV host defense, killed infected target dendritic cells and contributed to clearance of DENV in vivo. We believe immune synapse formation between MCs and γδT cells is a novel mechanism to induce specific and protective immunity at sites of viral infection.

Authors

Chinmay Kumar Mantri, Ashley L. St. John

×

Abstract

Joint pain is the defining symptom of osteoarthritis (OA) but its origin and mechanisms remain unclear. Here, we investigated an unprecedented role of osteoclast-initiated subchondral bone remodeling in sensory innervation for OA pain. We show that osteoclasts secrete NETRIN1 to induce sensory nerve axonal growth in subchondral bone. Reduction of osteoclast formation by knockout of receptor activator of nuclear factor kappa-B ligand (Rankl) in osteocytes inhibited the growth of sensory nerves into subchondral bone, DRG neuron hyperexcitability, and behavioral measures of pain hypersensitivity in OA mice. Moreover, we demonstrated a possible role for NETRIN1 secreted by osteoclasts during aberrant subchondral bone remodeling in inducing sensory innervation and OA pain through its receptor DCC (deleted in colorectal cancer). Importantly, knockout of Netrin1 in tartrate-resistant acid phosphatase (TRAP) positive osteoclasts or knockdown of Dcc reduces OA pain behavior. In particular, inhibition of osteoclast activity by alendronate modifies aberrant subchondral bone remodeling and reduces innervation and pain behavior at the early stage of OA. These results suggest that intervention of the axonal guidance molecules (e.g. NETRIN1) derived from aberrant subchondral bone remodeling may have therapeutic potential for OA pain.

Authors

Shouan Zhu, Jianxi Zhu, Gehua Zhen, Yihe Hu, Senbo An, Yusheng Li, Qin Zheng, Zhiyong Chen, Ya Yang, Mei Wan, Richard Leroy Skolasky, Yong Cao, Tianding Wu, Bo Gao, Mi Yang, Manman Gao, Julia Kuliwaba, Shuangfei Ni, Lei Wang, Chuanlong Wu, David Findlay, Holger K. Eltzschig, Hong Wei Ouyang, Janet Crane, Feng-Quan Zhou, Yun Guan, Xinzhong Dong, Xu Cao

×

Abstract

Both natural influenza infection and current seasonal influenza vaccines primarily induce neutralising antibody responses against highly diverse epitopes within the “head” of the viral hemagglutinin (HA) protein. There is increasing interest on redirecting immunity towards the more conserved HA-stem or stalk as a means to broaden protective antibody responses. Here we examined HA-stem-specific B cell and T-follicular helper (Tfh) cell responses in the context of influenza infection and immunisation in mouse and monkey models. We found that during infection the stem domain was immunologically subdominant to the head in terms of serum antibody production and antigen-specific B and Tfh responses. Similarly, we found HA-stem immunogens were poorly immunogenic compared to the full-length HA with abolished sialic acid binding activity, with limiting Tfh elicitation a potential constraint to the induction or boosting of anti-stem immunity by vaccination. Finally, we confirm that currently licensed seasonal influenza vaccines can boost pre-existing memory responses against the HA-stem in humans. An increased understanding of the immune dynamics surrounding the HA-stem is essential to inform the design of next-generation influenza vaccines for broad and durable protection.

Authors

Hyon-Xhi Tan, Sinthujan Jegaskanda, Jennifer A. Juno, Robyn Esterbauer, Julius Wong, Hannah G. Kelly, Yi Liu, Danielle Tilmanis, Aeron C. Hurt, Jonathan W. Yewdell, Stephen J. Kent, Adam K. Wheatley

×

Abstract

ARHGEF1 is a RhoA-specific guanine nucleotide exchange factor expressed in hematopoietic cells. We used whole-exome sequencing to identify compound heterozygous mutations in ARHGEF1, resulting in the loss of ARHGEF1 protein expression in two primary-antibody-deficient siblings presenting with recurrent severe respiratory tract infections and bronchiectasis. Both ARHGEF1-deficient patients showed an abnormal B cell immunophenotype, with a deficiency in marginal-zone and memory B cells and an increased frequency of transitional B cells. Furthermore, the patients’ blood contained immature myeloid cells. Analysis of a mediastinal lymph node from one patient highlighted the small size of the germinal centres and an abnormally high plasma cell content. On the molecular level, T and B lymphocytes from both patients displayed low RhoA activity and low steady-state actin polymerization (even after stimulation of lysophospholipid receptors). As a consequence of disturbed regulation of the RhoA downstream target ROCK, the patients’ lymphocytes failed to efficiently restrain AKT phosphorylation. Enforced ARHGEF1 expression or drug-induced activation of RhoA in patients’ cells corrected the impaired actin polymerization and AKT regulation. Our results indicate that ARHGEF1 activity in human lymphocytes is involved in controlling actin cytoskeleton dynamics, restraining PI3K/AKT signalling, and confining B lymphocytes and myelocytes within their dedicated functional environment.

Authors

Amine Bouafia, Sébastien Lofek, Julie Bruneau, Loïc Chentout, Hicham Lamrini, Amélie Trinquand, Marie-Céline Deau, Lucie Heurtier, Véronique Meignin, Capucine Picard, Elizabeth Macintyre, Olivier Alibeu, Marc Bras, Thierry Jo Molina, Marina Cavazzana, Isabelle André-Schmutz, Anne Durandy, Alain Fischer, Eric Oksenhendler, Sven Kracker

×

Abstract

Energy stress, such as ischemia, induces mitochondrial damage and death in the heart. Degradation of damaged mitochondria by mitophagy is essential for the maintenance of healthy mitochondria and survival. Here we show that mitophagy during myocardial ischemia was mediated predominantly through autophagy characterized by Rab9-associated autophagosomes, rather than the well-characterized form of autophagy that is dependent upon the Atg-conjugation system and LC3. This form of mitophagy played an essential role in protecting the heart against ischemia and was mediated by a protein complex consisting of Ulk1, Rab9, Rip1 and Drp1. This complex allowed recruitment of trans-Golgi membranes associated with Rab9 to damaged mitochondria through Ser179 phosphorylation of Rab9 by Ulk1 and Ser616 phosphorylation of Drp1 by Rip1. Knock-in of Rab9 (S179A) abolished mitophagy and exacerbated injury in response to myocardial ischemia without affecting conventional autophagy. Mitophagy mediated through the Ulk1-Rab9-Rip1-Drp1 pathway protected the heart against ischemia by maintaining healthy mitochondria.

Authors

Toshiro Saito, Jihoon Nah, Shin-ichi Oka, Risa Mukai, Yoshiya Monden, Yusuhiro Maejima, Yoshiyuki Ikeda, Sebastiano Sciarretta, Tong Liu, Hong Li, Erdene Baljinnyam, Diego Fraidenraich, Luke Fritzky, Peiyong Zhai, Shizuko Ichinose, Mitsuaki Isobe, Chiao-Po Hsu, Mondira Kundu, Junichi Sadoshima

×

Advertisement

December 2018

128 12 cover

December 2018 Issue

On the cover:
Fractal analysis reveals complex airway geometry

In this issue of the JCI, Bodduluri et al. demonstrate that characterizing airway branching complexity and remodeling using fractal dimensions can provide prognostic information that associates closely with measurements of COPD progression, including lung function decline and mortality. This approach may provide important clinical insights into the mechanisms underlying progression of COPD and other respiratory diseases. This issue’s cover illustrates the branching airways of a smoker without airflow obstruction.

×
Jci tm 12

December 2018 JCI This Month

JCI This Month is a digest of the research, reviews, and other features published each month.

×

Review Series - More

Mitochondrial dysfunction in disease

Series edited by Michael Sack

Mitochondria transform nutrients and oxygen into chemical energy that powers a multitude of cellular functions. While mitochondrial aerobic glycolysis generates the majority of a cell’s ATP, its byproducts also have wide-ranging influences on cellular health and longevity. This review series, edited by Dr. Michael Sack, focuses on the many contributions of mitochondria to disease and aging. The reviews highlight evidence linking altered mitochondrial metabolism and oxidative stress to a range of pathophysiological phenomena: inflammation and immune dysfunction, heart failure, cancer development, metabolic disease, and more. In many diseases and conditions, mitochondrial dysfunction is considered the tipping point toward pathological progression. However, as these reviews discuss, therapeutic targeting of mitochondria may be a powerful strategy to subvert disease and aging processes.

×