

**Supplemental Figure 1. KDM6B is up-regulated in** *Asxl1* mutant cells. (A and B) Gene set enrichment analysis (GSEA) shows that the targets of SUZ12 (A) and EED (B) are up-regulated in *Asxl1*<sup>Y588X</sup>Tg LK cells. The normalized enrichment score (NES), *P*-value, and FDR are shown. (C) Kaplan-Meier survival analyses of AML patients with *ASXL1* mutations based on their *KDM6B* expression level. The median level of *KDM6B* in *ASXL1*<sup>Mut</sup>. OSm, medium overall survival. *ASXL1*<sup>WT</sup>, n = 583; *ASXL1*<sup>Mut</sup> with *KDM6B*<sup>low</sup>, n = 24; *ASXL1*<sup>Mut</sup> with *KDM6B*<sup>high</sup>, n = 42. (D and F) Western blot analysis of KDM6B (D) and H3K27me3 (F) levels in K562 cells after expressing empty vector (EV) or sgRNA targeting KDM6B (sgKDM6B). (E) Sanger sequencing of *KDM6B* locus in K562 cells after nucleofection of EV and sgKDM6B. (G) Four independent Western blots were quantified by densitometry using ImageJ software. Data represent the mean ± SEM. \**P* < 0.05 and \*\**P* < 0.01, by Log-rank (Mantel-Cox) test (C) or unpaired Student's *t* test (G).



Supplemental Figure 2. Heterozygous deletion of *Kdm6b* blocks the development of ASXL1<sup>Y588X</sup>-mediated myeloid malignancies. (A) Genotyping results of WT, Asx $11^{Y588X}$ Tg, Mx1Cre<sup>+</sup>;Kdm6b<sup>flox/+</sup> (Kdm6b<sup> $\Delta$ /+</sup>), and Asx $11^{Y588X}$ Tg;Mx1Cre<sup>+</sup>;Kdm6b<sup>flox/+</sup>  $(AsxI1^{Y588X}Tg;Kdm6b^{\Delta/+})$  mice. (B and C) gPCR showing the mRNA levels of AsxI1 (both endogenous and transgenic mutant, B) and Kdm6b (C) in BM cells from WT, Asx/1<sup>Y588X</sup>Tg, Kdm6b<sup> $\Delta$ /+</sup>, and Asx/1<sup>Y588X</sup>Tg;Kdm6b<sup> $\Delta$ /+</sup> mice (n = 5 per genotype). (D) Western blots showing ASXL1<sup>aa1-587</sup> expression and KDM6B protein levels in the BM cells from mice of each genotype.  $\beta$ -ACTIN was used as a loading control. (E) May-Giemsa– stained PB smears demonstrating dysplastic erythroid cells and neutrophils from representative Asx/1<sup>Y588X</sup>Tg mice. Scale bar, 10 µm. (F and G) Percent of lymphocytes (F) and white blood cells count (G) in WT (n = 18),  $Asx/1^{Y588X}Tg$  (n = 19),  $Kdm6b^{\Delta/+}$  (n = 12), and  $Asx/1^{Y588X}Tg;Kdm6b^{\Delta/+}$  (n = 14) mice. (H) Body weight from WT (n = 16),  $Asx/1^{Y588X}Tg$  (n = 14),  $Kdm6b^{\Delta/+}$  (n = 11), and  $Asx/1^{Y588X}Tg$ ; $Kdm6b^{\Delta/+}$  (n = 10) mice are shown. (I) The gross appearance of liver from representative mice of each genotype. (J) Representative H&E staining of liver sections is shown. Scale bar, 100 µm. (K) Representative MPO staining of spleen sections is shown. Scale bar, 100 µm. Data represent the mean  $\pm$  SEM. \*\*\*P < 0.001, by 1-way ANOVA with Tukey's multiple comparisons test.



# Supplemental Figure 3 (cont'd)



Supplemental Figure 3. Genetic reduction of *Kdm6b* restores ASXL1<sup>Y588X</sup>-mediated **HSC** phenotypes and myeloid differentiation. (A and B) Frequencies of B cells (B220<sup>+</sup>, A) and T cells (CD4<sup>+</sup>, CD8<sup>+</sup>, and CD4<sup>+</sup>/CD8<sup>+</sup>, B) in PB from WT (n = 18),  $AsxI1^{Y588X}$ Tg (n = 17), *Kdm6b*<sup> $\Delta/+$ </sup> (n = 12), and *Asx/1*<sup>Y588X</sup>Tg;*Kdm6b*<sup> $\Delta/+$ </sup> (n = 12) mice are shown. (C) BM cellularity of WT (n = 18),  $Asx/1^{Y588X}Tg$  (n = 17),  $Kdm6b^{\Delta/+}$  (n = 12), and Asx/1<sup>Y588X</sup>Tg;Kdm6b<sup> $\Delta/+$ </sup> (n = 12) mice. (D and G) Quantification of the percentage of ST-HSCs (d) and LKS<sup>-</sup> cells (G) in BM from WT (n = 19),  $Asx/1^{Y588X}$ Tg (n = 19),  $Kdm6b^{\Delta/+}$  (n = 15), and  $Asx/1^{Y588X}Tg;Kdm6b^{\Delta/+}$  (n = 15) mice. (E and F) Flow cytometric analysis of HSPCs in BM cells from each genotype at 6 weeks (E) and 21 weeks (F) of age (n = 5 mice per group). (H) Representative images of colony formation for BM cells from each genotype. The images were taken on the seventh day of the assay. (I) Schematic for competitive repopulation assay. CD45.2<sup>+</sup> BM cells from WT, Asx/1<sup>Y588X</sup>Tg, *Mx1Cre*<sup>+</sup>;*Kdm6b*<sup>flox/+</sup>, or *Asx11*<sup>Y588X</sup>Tg;*Mx1Cre*<sup>+</sup>;*Kdm6b*<sup>flox/+</sup> mice were mixed with equal numbers of CD45.1<sup>+</sup> competitor cells and transplanted into lethally irradiated CD45.1<sup>+</sup> recipient mice followed by pl:pC injection (10 mg/kg) 4 weeks afterwards. (J) Representative flow cytometric analysis of PB from recipient animals 24 weeks after pl:pC injection. Data represent the mean ± SEM. \*\*P < 0.01 and \*\*\*P < 0.001, by 1-way ANOVA with Tukey's multiple comparisons test.



Supplemental Figure 4. Heterozygous deletion of *Kdm6b* decreases ASXL1<sup>Y588X</sup>mediated transcription activation in HSPCs. (A) Volcano plot showing the significantly dysregulated genes in Lin<sup>-</sup>cKit<sup>+</sup> (LK) cells from different comparisons (FDR < 0.05 and [fold change] > 1.5). (B) GSEA shows that genes involved in the regulation of SUZ12 and EED targets are up-regulated in Asx/1<sup>Y588X</sup>Tg LK cells, but down-regulated in Asx/1<sup>Y588X</sup>Tg;Kdm6b<sup> $\Delta/+$ </sup> cells. NES, P value, and FDR are shown. (C and D) Transcript per million (TPM) values of PRC2 subunits (C), Gata2 and Meis1 (D) in RNA-seq are shown (n = 3 per genotype). (E and F) Heatmap displaying gene expression for all genes differentially expressed in LK cells from each mutant genotype relative to WT controls (FDR < 0.05 and |fold change| > 1.5, n = 4 mice per group). Compared with WT cells, the LK cells from 6-week-old Asx/1<sup>Y588X</sup>Tg and Asx/1<sup>Y588X</sup>Tg;Kdm6b<sup> $\Delta$ /+</sup> mice had 21 and 49 dysregulated genes, respectively (E). The numbers of dysregulated genes in 21-weekold  $Asx/1^{Y588X}$ Tg and  $Asx/1^{Y588X}$ Tg; $Kdm6b^{\Delta/+}$  LK cells were increased to 93 and 116, respectively, compared with WT controls (F). The dysregulated genes were not enriched in HSC function, LSC, and AML pathways. Data represent the mean  $\pm$  SEM. \*\*P < 0.01 and \*\*\*P < 0.001, by 1-way ANOVA with Tukey's multiple comparisons test.



Supplemental Figure 5. Genetic reduction of *Kdm6b* in *Asxl1*<sup>Y588X</sup>Tg mice normalizes the levels of dysregulated genes by restoring H3K27me3 levels. (A) Western blot analysis and densitometric quantification for H3K27me3 in BM cells from WT, *Asxl1*<sup>Y588X</sup>Tg, *Kdm6b*<sup> $\Delta$ /+</sup>, and *Asxl1*<sup>Y588X</sup>Tg;*Kdm6b*<sup> $\Delta$ /+</sup> mice (n= 5 mice per genotype). Relative H3K27me3 levels were quantified using ImageJ software. (B) Global levels of H3K27me3 at gene body and 1-kb regions surrounding the gene body. The coverages were normalized by the sequencing depth and averaged in two biological replicates. (C) Genome-wide distribution of H3K27me3 peaks in LK cells from WT, *Asxl1*<sup>Y588X</sup>Tg, *Kdm6b*<sup> $\Delta$ /+</sup>, and *Asxl1*<sup>Y588X</sup>Tg;*Kdm6b*<sup> $\Delta$ /+</sup> mice. (D) Genome-wide distribution of differentially enriched H3K27me3 regions in LK cells. Regions that overlap in the two biological replicates are preserved. (E and F) Venn diagram showing the overlaps between dysregulated genes with H3K27me3 changes in LK cells. The number of genes in each section of the diagram is shown. (G) Normalized H3K27me3 signals on the *Meis1* gene loci. Data represent the mean ± SEM. \*\*\*P < 0.001, by 1-way ANOVA with Tukey's multiple comparisons test.



Supplemental Figure 6. *Asxl1*<sup>Y588X</sup>Tg BM cells are sensitive to KDM6B inhibitor GSK-J4. (A) Western blot and densitometric analysis of H3K27me3 in BM cells with the treatment of 5  $\mu$ M of GSK-J4 for 24 hours. The quantification was normalized with H3 signal and relative to WT untreated cells. (B) qPCR showing the decreases of *Gata2* and *Meis1* mRNA levels in *Asxl1*<sup>Y588X</sup>Tg cells treated with GSK-J4 (n = 3). (C) Schema of GSK-J4 treatment *in vivo*. CD45.2<sup>+</sup> splenic cells from *Asxl1*<sup>Y588X</sup>Tg leukemic mice were injected into sub-lethally irradiated CD45.1<sup>+</sup> recipient mice. After 2 weeks of transplantation, the mice were randomized to treated with GSK-J4 or vehicle control. (D) Representative flow cytometric analysis of CD45.2 and Gr1<sup>+</sup>/Mac1<sup>+</sup> in BM cells from the recipient mice transplanted with *Asxl1*<sup>Y588X</sup>Tg cells before and after the treatment of GSK-J4. (E) May-Giemsa–stained BM cytospins prepared from the recipient mice treated with GSK-J4 or vehicle control. Scale bar, 50  $\mu$ m. Data were derived from 3-4 independent experiments and represent the mean ± SEM. \**P* < 0.05, \*\**P* < 0.01, and \*\*\**P* < 0.001, by 1-way ANOVA with Tukey's multiple comparisons test (A) or unpaired Student's *t* test (B).

Supplemental Figure 7



## Supplemental Figure 7 (cont'd)



Supplemental Figure 7. Pharmacologic KDM6B inhibition blocks the growth of ASXL1-mutation mediated leukemic cells. (A) Proliferation curves of K562 cells treated with GSK-J4 at indicated concentrations. (B) Human leukemia cells were treated with various concentrations of GSK-J4 for 48 hours. The viabilities of the cultured cells were measured using CellTiter-Glo luminescent assay. K562, IC<sub>50</sub> = 0.406 µM; Kasumi-1, IC<sub>50</sub> = 2.02 μM; OCI-AML5, IC<sub>50</sub> = 1.91 μM; OCI-AML3, IC<sub>50</sub> = 11.77 μM; THP-1, IC<sub>50</sub> = 8.88 μM; MOLM13, IC<sub>50</sub> = 9.32 μM. (C) Western blot analysis of H3K27me3 levels in THP-1 cells treated with vehicle control or 5  $\mu$ M GSK-J4 after 24, 48, and 72 hours, respectively. V, vehicle; G, GSK-J4. (D) ChIP-qPCR showing the levels of H3K27me3 occupancies at the promoter regions of GATA2 and MEIS1 in THP-1 cells. (E) The relative mRNA levels of GATA2 and MEIS1 in THP-1 cells were analyzed by gPCR. (F and G) Colony-forming assays using human leukemia cell lines in the presence of 5 µM GSK-J4. Representative images of colony formation from each cell line are shown. (H and I) Colony-forming assays using primary patient cells with or without GSK-J4 treatment. Representative images of colony formation for PB cells from a post-ET MF patient (ASXL1 R693X, H) and a CMML patient (I) are shown. The images were taken on the 14<sup>th</sup> day of the assay. ET, essential thrombocythemia; MF, myelofibrosis. (J and K) Western blot showing the levels of H3K27me3 in human PB cells from a post-ET MF patient (J) and a CMML patient (K) with the treatment of 5 µM GSK-J4 for 72 hours. (L) Schema of GSK-J4 treatment using human leukemic cell line K562 with ASXL1 mutation or THP-1 without ASXL1 mutation. (M) May-Giemsa-stained BM cytospins prepared from the K562-transplanted NSG mice treated with GSK-J4. Scale bar, 50 µm. (N) Schema of GSK-J4 treatment in AML PDX #1 xenografted NSG mice. Black arrow indicating transplantation and red arrows indicating the start/end point of drug treatment. (O) Representative flow cytometric analysis of human CD45 in the BM of NSG mice transplanted with AML PDX #1 after the treatment of GSK-J4 or DMSO. (P) Spleen weights of AML PDX #1 xenografted mice treated with DMSO or GSK-J4 at end point (n = 7 mice per group). (Q) Averaged body weight of AML PDX #1 transplanted NSG mice treated with DMSO or GSK-J4 (n = 7 per group). (R) Kaplan-Meier survival curve for THP-1-transplanted NSG mice treated with DMSO or GSK-J4 (n = 5 per group). (S) Survival curve of NSG mice transplanted with AML PDX #2 and treated with DMSO or 50 mg/kg GSK-J4 (n = 5 per group). (T) Spleen

weights of AML PDX #2 mice shown in S. (U) The mRNA levels of *GATA2* in K562 and Kasumi-1 cells transduced with control shRNA or *GATA2* shRNAs. (V) The mRNA levels of *MEIS1* in K562 and Kasumi-1 cells transduced with control shRNA or *MEIS1* shRNAs. (W and X) Count of colonies formed by K562 (W) and Kasumi-1 (X) cells expressing shRNAs against *GATA2* or *MEIS1*. Data were derived from 3-4 independent experiments and represent the mean  $\pm$  SEM. \**P* < 0.05, \*\**P* < 0.01, and \*\*\**P* < 0.001, by 1-way ANOVA with Tukey's multiple comparisons test (A, U-X) or unpaired Student's *t* test (E, F, H, and P).

| Survival (days) | Frequency    | BM blasts | Diagnosis and Subclassification  |
|-----------------|--------------|-----------|----------------------------------|
| 415-800         | 42.1% (8/19) | <20%      | MPN, MDS/MPN                     |
| 341-751         | 36.8% (7/19) | >20%      | Myeloid leukemia                 |
| 593-779         | 21.1% (4/19) | <20%      | Myeloid leukemia with maturation |

| Supplemental Table 1. Summary of diseased/moribund <i>AsxI1<sup>Y588X</sup>Tg</i> mice. |  |  |  |  |  |
|-----------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                                         |  |  |  |  |  |

| Survival<br>(days) | Necropsy and other findings                                                                    | BM<br>blasts | Diagnosis and<br>Subclassification |
|--------------------|------------------------------------------------------------------------------------------------|--------------|------------------------------------|
| 590                | Hepatosplenomegaly, WBC↑, NE↑, RBC↑, Hgb↑,<br>Plt↓, spleen and liver with myeloid infiltration | <20%         | MPN, MDS/MPN                       |
| 602                | WBC↓, NE↑, RBC↓, Hgb↓                                                                          | <20%         | MPN, MDS/MPN                       |

# Supplemental Table 2. Summary of diseased $Asx11^{Y588X}Tg;Kdm6b^{\Delta/+}$ mice.

# Supplemental Table 3. 109 dysregulated genes involved in HSC functions, LSCs, and AML pathway in *Asxl1<sup>Y588X</sup>*Tg cells.

| #  | Gene          | log2FC | FDR value | #   | Gene     | log2FC | FDR value |
|----|---------------|--------|-----------|-----|----------|--------|-----------|
| 1  | Clu           | 2.70   | 3.54E-27  | 56  | Grik5    | 1.14   | 1.60E-03  |
| 2  | Col18a1       | 3.52   | 9.66E-26  | 57  | Hbegf    | 1.42   | 1.68E-03  |
| 3  | Mmrn1         | 2.21   | 3.16E-23  | 58  | Sall2    | 1.19   | 1.76E-03  |
| 4  | HIf           | 1.26   | 7.04E-19  | 59  | Sh3pxd2b | 0.82   | 1.82E-03  |
| 5  | Dsg2          | 3.54   | 4.43E-18  | 60  | Muc1     | 2.40   | 1.96E-03  |
| 6  | Fgd5          | 2.54   | 7.62E-17  | 61  | Tnfsf10  | 0.81   | 1.98E-03  |
| 7  | Angpt1        | 1.47   | 1.10E-15  | 62  | Egr3     | 1.34   | 2.06E-03  |
| 8  | Mecom         | 1.99   | 3.18E-14  | 63  | Cdk14    | 1.35   | 2.25E-03  |
| 9  | Tgm2          | 1.65   | 4.36E-14  | 64  | Dlk1     | 4.30   | 2.35E-03  |
| 10 | Meis1         | 1.26   | 6.58E-14  | 65  | Ccdc112  | 1.64   | 2.45E-03  |
| 11 | Scarf1        | 1.28   | 1.05E-12  | 66  | Kcnk5    | 1.15   | 2.46E-03  |
| 12 | Slc27a6       | 3.05   | 1.40E-12  | 67  | Zbtb4    | 1.03   | 2.63E-03  |
| 13 | Nrgn          | 1.57   | 1.40E-12  | 68  | Limch1   | 2.80   | 2.78E-03  |
| 14 | Dst           | 1.83   | 1.72E-12  | 69  | Bex1     | 1.89   | 3.23E-03  |
| 15 | Adgrg1        | 0.99   | 1.86E-12  | 70  | Fut10    | 1.11   | 3.42E-03  |
| 16 | Tie1          | 1.35   | 5.92E-12  | 71  | Kazn     | 2.05   | 3.75E-03  |
| 17 | Plxnb2        | 1.06   | 1.31E-11  | 72  | Adgra3   | 0.83   | 4.25E-03  |
| 18 | Fhl1          | 2.23   | 4.86E-11  | 73  | Gucy1a1  | 1.30   | 4.50E-03  |
| 19 | Myct1         | 2.04   | 5.51E-11  | 74  | Adgrl1   | 1.03   | 4.63E-03  |
| 20 | Procr         | 2.97   | 1.41E-09  | 75  | Chst2    | 2.48   | 5.45E-03  |
| 21 | Eya2          | 1.95   | 6.12E-09  | 76  | Myom1    | 1.55   | 5.74E-03  |
| 22 | lfitm1        | 1.34   | 7.38E-09  | 77  | Bcl9l    | 0.62   | 6.59E-03  |
| 23 | Nbea          | 2.06   | 2.34E-08  | 78  | Basp1    | 0.93   | 6.99E-03  |
| 24 | Obsl1         | 2.30   | 3.48E-08  | 79  | Prkch    | 0.66   | 8.41E-03  |
| 25 | Vdr           | 1.38   | 8.72E-08  | 80  | Arhgef10 | 1.57   | 8.56E-03  |
| 26 | Муо5с         | 2.65   | 1.34E-07  | 81  | Fzd3     | 1.26   | 9.60E-03  |
| 27 | Jag2          | 1.90   | 1.83E-07  | 82  | Krba1    | 0.94   | 9.82E-03  |
| 28 | Jam2          | 2.36   | 3.21E-07  | 83  | Fstl1    | 1.39   | 9.85E-03  |
| 29 | Irf6          | 2.26   | 8.06E-07  | 84  | Prex2    | 1.65   | 1.07E-02  |
| 30 | Ltbp3         | 1.18   | 1.22E-06  | 85  | Large1   | 0.98   | 1.29E-02  |
| 31 | Slc6a15       | 1.89   | 1.55E-06  | 86  | Abcb1a   | 1.96   | 1.38E-02  |
| 32 | Ppp1r9a       | 1.23   | 2.06E-06  | 87  | Mylk     | 0.89   | 1.57E-02  |
| 33 | Prdm16        | 1.68   | 3.55E-06  | 88  | Pcgf2    | 1.17   | 1.60E-02  |
| 34 | H1f0          | 0.83   | 9.09E-06  | 89  | Arhgef5  | 1.09   | 1.72E-02  |
| 35 | Syde1         | 2.11   | 3.37E-05  | 90  | Fam174b  | 0.85   | 1.76E-02  |
| 36 | Sel1l3        | 3.43   | 3.50E-05  | 91  | Snrpn    | 5.79   | 1.87E-02  |
| 37 | Gata2         | 0.73   | 5.24E-05  | 92  | Cavin3   | 2.61   | 1.92E-02  |
| 38 | Ccnd1         | 1.03   | 5.80E-05  | 93  | Sema3f   | 3.26   | 1.96E-02  |
| 39 | Fads1         | 0.68   | 7.67E-05  | 94  | Eogt     | 0.89   | 2.24E-02  |
| 40 | Rorc          | 2.41   | 1.01E-04  | 95  | Tbxas1   | 0.61   | 2.34E-02  |
| 41 | Fgfr1         | 1.57   | 1.58E-04  | 96  | MIIt3    | 0.62   | 2.73E-02  |
| 42 | Ctnnal1       | 1.34   | 1.64E-04  | 97  | Synpo    | 2.60   | 2.81E-02  |
| 43 | Fzd8          | 1.69   | 1.86E-04  | 98  | Rora     | 1.22   | 2.87E-02  |
| 44 | Plekha5       | 1.02   | 1.88E-04  | 99  | Zfp827   | 1.07   | 2.92E-02  |
| 45 | Ocln          | 3.87   | 2.40E-04  | 100 | Srgap3   | 0.77   | 4.10E-02  |
| 46 | Plxnb1        | 3.96   | 4.95E-04  | 101 | Cacnb2   | 0.87   | 4.11E-02  |
| 47 | D630045J12Rik | 1.31   | 5.72E-04  | 102 | Zfp467   | 1.16   | 4.37E-02  |
| 48 | Adarb1        | 2.05   | 6.13E-04  | 103 | Nectin1  | 0.86   | 4.50E-02  |
| 49 | Crim1         | 1.06   | 6.99E-04  | 104 | Eid2     | 1.35   | 4.60E-02  |
| 50 | Efna1         | 5.38   | 7.57E-04  | 105 | Ndn      | 1.72   | 4.90E-02  |
| 51 | lfitm3        | 0.66   | 7.66E-04  | 106 | Cnn3     | -0.85  | 9.24E-03  |
| 52 | Gli3          | 5.40   | 8.44E-04  | 107 | Mreg     | -0.83  | 1.61E-02  |
| 53 | Hoxb5         | 4.30   | 1.12E-03  | 108 | Prg2     | -1.09  | 4.12E-02  |
| 54 | Pxdn          | 3.21   | 1.23E-03  | 109 | Gpc4     | -0.88  | 4.59E-02  |
| 55 | Cntn1         | 5.96   | 1.54E-03  |     | FC, fold | change |           |

| Name                   | Forward                | Reverse                |  |  |  |
|------------------------|------------------------|------------------------|--|--|--|
| Genotyping PCR (K562)  |                        |                        |  |  |  |
| KDM6B                  | CACCCGTGCCATTTTCTCTT   | CTGAGAGTGCTGCAGGAGG    |  |  |  |
| Genotyping F           | PCR (mice)             |                        |  |  |  |
| Asxl1 <sup>Y588X</sup> | ACCCGTCAACGGGACGGAC    | CGATCCGGGGGGCATATCTGTC |  |  |  |
| Kdm6b-flox             | CAGCGATCCTGACTTGTTCA   | GTGCCAAGGCTGGAGGA      |  |  |  |
| Kdm6b-Rec              | CGGTCCTGCTACAGTTCTGT   | TCTTTGACACGGCCTTGGTA   |  |  |  |
| qPCR                   |                        |                        |  |  |  |
| mAsxl1                 | TCACACCGAAAAGCCACAG    | GGGCATATCTGGTAAGTGGG   |  |  |  |
| mKdm6b                 | GAGAGGGAGAGTGAGGATGAG  | TTGCCTGTGGATGTTACCC    |  |  |  |
| mGata2                 | ATACCCACCTATCCCTCCTATG | AGCCTTGCTTCTCTGCTTAG   |  |  |  |
| mMeis1                 | GCAAAGTATGCCAGGGGAGTA  | TCCTGTGTTAAGAACCGAGGG  |  |  |  |
| mActb                  | GGCTGTATTCCCCTCCATCG   | CCAGTTGGTAACAATGCCATGT |  |  |  |
| hGATA2                 | ACTGACGGAGAGCATGAAGAT  | CCGGCACATAGGAGGGGTA    |  |  |  |
| hMEIS1                 | GGGCATGGATGGAGTAGGC    | GGGTACTGATGCGAGTGCAG   |  |  |  |
| hACTB                  | GCACAGAGCCTCGCCTTT     | CGGCGATATCATCATCCAT    |  |  |  |
| ChIP-qPCR              |                        |                        |  |  |  |
| mGata2                 | GTCCACAATCCCTAGACTCATG | AGCCCAAATCCAACTGACTC   |  |  |  |
| mMeis1                 | GTGTGTGGTGTTAGTGCCTG   | AGAACCCGGAAGTAGTGGTG   |  |  |  |
| hGATA2                 | CTCTACCCCCAGCTCCTACC   | ACTCGGCCTCTGAGAGTGAA   |  |  |  |
| hMEIS1                 | GCTGTAAGGACTGTGCCATG   | ACAAACACATCGGTTCGCAA   |  |  |  |

# Supplemental Table 4. Primers used in this study.

Supplemental Table 5. List of myeloid malignancy patient characteristics.

| Primary<br>sample |       | Cytogenetics                                                                                                                                                                                                                                              |
|-------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MDS               | BMMNC | ASXL1 c.1934dup, p.Gly646fs; <i>RUNX1</i> c.1253dup, p.Met418fs;<br>U2AF1 c.470A>C, p.Gln157Pro; <i>CBL</i> c.1259G>A, p.Arg420Gln;<br><i>PHF6</i> c.71_74del, p.Arg24fs; <i>TET2</i> c.3866G>T, p.Cys1289Phe;<br><i>TET2</i> c.3317_3318del, p.Glu1106fs |
| Post-ET MF        | PBMC  | <i>ASXL1</i> c.2077C>T, p.Arg693*; <i>JAK2</i> c.1849G>T, p.Val617Phe                                                                                                                                                                                     |
| CMML              | PBMC  | <i>NPM1</i> c.860_863dup, p.Trp288fs; <i>TET2</i> c.4657C>T, p.Gln1553*;<br><i>TET2</i> c.3322_3328dup, p.Lys1110fs; <i>NRAS</i> c.35G>A, p.Gly12Asp;<br>47,XY,add(7)(q32),+8,add(22)(p13)/46,XY                                                          |

# Supplemental Table 6. Detailed list of reagents used in this study.

| Reagent or Resource                                             | Source                      | Identifier                          |  |  |  |  |
|-----------------------------------------------------------------|-----------------------------|-------------------------------------|--|--|--|--|
| Antibodies                                                      |                             |                                     |  |  |  |  |
| Mouse lineage antibody cocktail APC                             | BD Biosciences              | Cat# 558074; RRID:<br>AB_1645213    |  |  |  |  |
| Rat monoclonal anti-mouse CD117 (cKit)<br>PerCP-Cy5.5           | BD Biosciences              | Cat# 560557; RRID:<br>AB_1645258    |  |  |  |  |
| Rat monoclonal anti-mouse Ly-6A/E (Sca1)<br>PE-Cy7              | BD Biosciences              | Cat# 558162; RRID:<br>AB_647253     |  |  |  |  |
| Rat monoclonal anti-mouse CD34 FITC                             | BD Biosciences              | Cat# 553733; RRID:<br>AB_395017     |  |  |  |  |
| Rat monoclonal anti-mouse CD135 BV421                           | BD Biosciences              | Cat# 562898; RRID:<br>AB_2737876    |  |  |  |  |
| Rat monoclonal anti-mouse CD16/32 APC-<br>Cy7                   | BioLegend                   | Cat# 101327; RRID:<br>AB_1967102    |  |  |  |  |
| Rat monoclonal anti-mouse Ly-6G and Ly-<br>6C (Gr1) PerCP-Cy5.5 | BD Biosciences              | Cat# 552093; RRID:<br>AB_394334     |  |  |  |  |
| Rat monoclonal anti-mouse Ly-6G and Ly-<br>6C (Gr1) PE-Cy7      | BD Biosciences              | Cat# 565033; RRID:<br>AB_2739049    |  |  |  |  |
| Rat monoclonal anti-mouse CD11b (Mac1)<br>PE                    | BD Biosciences              | Cat# 553311; RRID:<br>AB_394775     |  |  |  |  |
| Rat monoclonal anti-mouse CD4 PerCP-<br>Cy5.5                   | BD Biosciences              | Cat# 550954; RRID:<br>AB 393977     |  |  |  |  |
| Rat monoclonal anti-mouse CD4 PE-Cy7                            | BD Biosciences              | Cat# 552775; RRID:<br>AB 394461     |  |  |  |  |
| Rat monoclonal anti-mouse CD8a PE                               | BD Biosciences              | Cat# 553033; RRID:<br>AB 394571     |  |  |  |  |
| Rat monoclonal anti-mouse CD45R/B220<br>APC                     | BD Biosciences              | Cat# 553092; RRID:<br>AB_398531     |  |  |  |  |
| Mouse monoclonal anti-mouse CD45.2<br>PerCP-Cy5.5               | BD Biosciences              | Cat# 552950; RRID:<br>AB_394528     |  |  |  |  |
| Mouse monoclonal anti-mouse CD45.2<br>Alexa Fluor 700           | Thermo Fisher<br>Scientific | Cat# 56-0454-82;<br>RRID: AB 657752 |  |  |  |  |
| Mouse monoclonal anti-mouse CD45.1<br>FITC                      | BD Biosciences              | Cat# 553775; RRID:<br>AB_395043     |  |  |  |  |
| Mouse monoclonal anti-Human CD45<br>BV421                       | BD Horizon                  | Cat# 563879; RRID:<br>AB 2744402    |  |  |  |  |
| Mouse monoclonal anti-<br>Myeloperoxidase/MPO                   | R&D systems                 | Cat# MAB3174                        |  |  |  |  |
| Rabbit polyclonal anti-H3K27me2                                 | Cell Signaling              | Cat# 9728; RRID:                    |  |  |  |  |
|                                                                 | Technology                  | AB_1281338                          |  |  |  |  |
| Rabbit polyclonal anti-H3K27me3                                 | MilliporeSigma              | Cat# 07-449; RRID:<br>AB_310624     |  |  |  |  |
| Rabbit polyclonal anti-H3                                       | Abcam                       | Cat# ab1791; RRID:<br>AB_302613     |  |  |  |  |
| Rabbit monoclonal anti-EZH2                                     | Cell Signaling              | Cat# 5246; RRID:                    |  |  |  |  |
| Pabhit manadanal anti SU712                                     |                             | AD_10094003                         |  |  |  |  |
|                                                                 | Technology                  | AB_2196850                          |  |  |  |  |

| Rabbit monoclonal anti-EED                                        | Cell Signaling<br>Technology | Cat# 85322                          |  |  |
|-------------------------------------------------------------------|------------------------------|-------------------------------------|--|--|
| Rabbit monoclonal anti-KDM6A                                      | Cell Signaling<br>Technology | Cat# 33510; RRID:<br>AB_2721244     |  |  |
| Rabbit polyclonal anti-KDM6B                                      | Thermo Fisher<br>Scientific  | Cat# PA5-72751;<br>RRID: AB 2718605 |  |  |
| Rabbit polyclonal anti-KDM6B                                      | Cell Signaling<br>Technology | Cat# 3457; RRID:<br>AB 1549620      |  |  |
| Mouse monoclonal anti-β-Actin                                     | MilliporeSigma               | Cat# A2228; RRID:<br>AB_476697      |  |  |
| Mouse monoclonal anti-FLAG M2                                     | MilliporeSigma               | Cat# F3165; RRID:<br>AB_259529      |  |  |
| Mouse IgG, HRP-linked whole Ab (from sheep)                       | GE Healthcare                | Cat# NA931; RRID:<br>AB_772210      |  |  |
| Rabbit IgG, HRP-linked F(ab') <sub>2</sub> fragment (from donkey) | GE Healthcare                | Cat# NA9340;<br>RRID: AB_772191     |  |  |
| Bacterial Strains                                                 |                              |                                     |  |  |
| One Shot Stbl3 Chemically Competent E. coli                       | Thermo Fisher<br>Scientific  | Cat# C737303                        |  |  |
| Chemicals, Peptides, and Recombinant Prote                        | eins                         |                                     |  |  |
| Poly(I:C)                                                         | InvivoGen                    | Cat# tlrl-pic-5                     |  |  |
| GSK-J4                                                            | Selleck Chemicals            | Cat# S7070                          |  |  |
| Methylcellulose medium MethoCult M3134                            | STEMCELL<br>Technologies     | Cat# 03134                          |  |  |
| Recombinant Murine Stem Cell Factor                               | Peprotech                    | Cat# 250-03                         |  |  |
| Recombinant Murine Interleukin 3                                  | Peprotech                    | Cat# 213-13                         |  |  |
| Recombinant Murine Thrombopoietin                                 | Peprotech                    | Cat# 315-14                         |  |  |
| Recombinant Murine Granulocyte-                                   | Peprotech                    | Cat# 315-03                         |  |  |
| Macrophage Colony-Stimulating Factor                              |                              |                                     |  |  |
| Recombinant Human Erythropoietin                                  | Peprotech                    | Cat# 100-64                         |  |  |
| Recombinant Human Interleukin-6                                   | Peprotech                    | Cat# 200-06                         |  |  |
| Recombinant Human SCF                                             | Peprotech                    | Cat# 300-07                         |  |  |
| Recombinant Human TPO                                             | Peprotech                    | Cat# 300-18                         |  |  |
| Recombinant Human IL-3                                            | Peprotech                    | Cat# 200-03                         |  |  |
| Recombinant Human Flt3-Ligand                                     | Peprotech                    | Cat# 300-19                         |  |  |
| Recombinant Human GM-CSF                                          | Peprotech                    | Cat# 300-03                         |  |  |
| StemRegenin 1                                                     | STEMCELL                     | Cat# /2342                          |  |  |
| Mayaa CD117 MiaraDaada                                            | I echnologies                | Cat# 120 001 221                    |  |  |
| Mouse CD117 MicroBeads                                            | Miltenyi Biotec              | Cal# 130-091-224                    |  |  |
| Mouse Direct Lineage Cell Depletion Kit                           | Thermo Fisher                | Cal# 130-110-470                    |  |  |
|                                                                   | Scientific                   | Cal# L3000075                       |  |  |
| SF Cell Line 4D-Nucleofector X Kit L                              | Lonza                        | Cat#: V4XC-2012                     |  |  |
| TRIzol Reagent                                                    | Thermo Fisher<br>Scientific  | Cat# 15596026                       |  |  |
| RIPA lysis buffer                                                 | MilliporeSigma               | Cat# 20-188                         |  |  |
| Prometheus ProSignal Pico ECL Reagent                             | Genesee Scientific           | Cat# 20-300                         |  |  |
| Prometheus ProSignal Femto ECL Reagent                            | Genesee Scientific           | Cat# 20-302                         |  |  |
| Critical Commercial Assays                                        |                              |                                     |  |  |

| QIAfilter Plasmid Maxi Kit                                       | Qiagen             | Cat# 12263         |
|------------------------------------------------------------------|--------------------|--------------------|
| RNeasy Plus Mini Kit                                             | Qiagen             | Cat# 74134         |
| QuantiTect Reverse Transcription Kit                             | Qiagen             | Cat# 205313        |
| Fast SYBR Green Master Mix                                       | Thermo Fisher      | Cat# 4385617       |
|                                                                  | Scientific         |                    |
| KAPA Stranded RNA-Seq Kit with                                   | KAPA Biosystems    | Cat# KR1151        |
| RiboErase (HMR)                                                  |                    |                    |
| MicroPlex Library Preparation Kit (v3)                           | Diagenode          | Cat# C05010001     |
| CellTiter-Glo 2.0 Cell Viability Assay                           | Promega            | Cat# G9242         |
| Experimental Models: Cell Lines                                  |                    |                    |
| Human: HEK 293TN cell                                            | System Biosciences | Cat# LV900A-1      |
| Human: BM CD34⁺ cell                                             | Lonza              | Cat# 2M-101C       |
| Human: K562 cell                                                 | ATCC               | Cat# CCL-243       |
| Human: Kasumi-1 cell                                             | ATCC               | Cat# CRL-2724      |
| Human: THP-1 cell                                                | ATCC               | Cat# TIB-202       |
| Human: MOLM-13 cell                                              | DSMZ               | Cat# ACC 554       |
| Human: OCI-AML5 cell                                             | DSMZ               | Cat# ACC 247       |
| Human: OCI-AML3 cell                                             | DSMZ               | Cat# ACC 582       |
| Experimental Models: Organisms/Strains                           |                    |                    |
| Mouse: B6.Cg-Tg(Mx1-cre)1Cgn/J (Mx1-                             | The Jackson        | JAX: 003556; RRID: |
| Cre)                                                             | Laboratory         | IMSR JAX:003556    |
| Mouse: B6.SJL-Ptprc <sup>a</sup> Pepc <sup>b</sup> /BoyJ (BoyJ)  | The Jackson        | JAX: 002014; RRID: |
|                                                                  | Laboratory         | IMSR_JAX:002014    |
| Mouse: B6.Cg-Kdm6b <sup>tm1.1Rbo</sup> /J                        | The Jackson        | JAX: 029615; RRID: |
|                                                                  | Laboratory         | IMSR_JAX:029615    |
| Mouse: <i>Asxl1<sup>Y588X</sup></i> Tg                           | Our lab            |                    |
| Mouse: NOD.Cg-Prkdc <sup>scid</sup> II2rg <sup>tm1WjI</sup> /SzJ | The Jackson        | JAX: 005557; RRID: |
|                                                                  | Laboratory         | IMSR_JAX:005557    |
| Recombinant DNA                                                  |                    |                    |
| lentiCRISPRv2GFP                                                 | Addgene            | Cat# 82416; RRID:  |
|                                                                  |                    | Addgene_82416      |
| lentiCRISPRv2GFP-sgKDM6B                                         | This Paper         | N/A                |
| pLV-EGFP-U6-Scramble-shRNA                                       | This Paper         | N/A                |
| pLV-EGFP-U6-GATA2-shRNA#1                                        | This Paper         | N/A                |
| pLV-EGFP-U6-GATA2-shRNA#2                                        | This Paper         | N/A                |
| pLV-EGFP-U6-MEIS1-shRNA#1                                        | This Paper         | N/A                |
| pLV-EGFP-U6-MEIS1-shRNA#2                                        | This Paper         | N/A                |